Perkin Communications

Synthesis of 3-Amino-4-phenylpyridines: a Novel Strategy for the Preparation of cD Ring Models of Streptonigrin

Francis Marsais, Jean-Claude Rovera, Alain Turck, Alain Godard, and Guy Quéguiner * Laboratoire de Chimie Organique Fine et Hétérocyclique de l'IRCOF, URA CNRS 1429, Institut National des Sciences Appliquées de Rouen, BP 08-76131 Mont-Saint-Aignan Cedex, France

An efficient synthesis of 3-amino-4-phenylpyridine derivatives is reported. 3-Pivaloylaminopyridines were lithiated by butyl-lithium before reaction with iodine as electrophile to afford 4-iodo-3-pivaloylaminopyridines. Cross-coupling of the latter with suitable phenylboronic acids gives cD ring models of streptonigrin.

The 3-amino-4-phenylpyridine unit (1) occurs in alkaloids of biological interest, such as compounds of the streptonigrin series (2)¹ and is an interesting starting material for the synthesis of the β -carbolines (3).² Three total syntheses of

streptonigrin have been already described.³⁻⁵ In each of them the required 4-phenylpyridine moiety has been elaborated by construction of the pyridine ring starting from substituted benzenes. Nonregiospecific reactions^{4,5} as well as complex multistep functionalization of polycyclic structures only allowed poor overall yields. Thus the research of a convergent pathway to the streptonigrin skeleton was an interesting challenge for us and we decided to study a general methodology based on the coupling of the three main units of the structure: the quinoline, pyridine, and phenyl blocks.

As the first part of this work we report here on a new synthesis of 3-amino-4-phenylpyridine derivatives (1) in two steps starting from 3-pivaloylaminopyridines (4) using the general palladium-catalyzed cross-coupling strategy in connection with the lithiation reaction.⁶

In previous papers we described a convenient method of functionalization of 3-pivaloylaminopyridines at the C-4 position by metallation.^{7,8} This methodology has been used to introduce an iodo group at the C-4 position: lithiation of 3-pivaloylaminopyridines (method a: BuLi 2.5 equiv., Et₂O, -10 °C) followed by iodation (-70 °C to -10 °C) afforded the 4-iodopyridines (5) in moderate to good yields (55–75%) (Table 1). It should be pointed out that 2-butyl-4-iodo-3-pivaloylaminopyridine (5) (R¹ = Bu) is obtained in 25% yield under the previous conditions starting from the corresponding 2-chloro-3-pivaloylaminopyridine (4; R¹ = Cl). Nucleophilic substitution of chlorine occurs at the required lithiation temperature. This

 Table 1. Synthesis of 4-iodo-3-pivaloylaminopyridines by lithiation of

 3-pivaloylaminopyridines using iodine as electrophile.

Compound	R ¹	Method	Yield (%)
(5a)	Н	a	75
(5b)	OMe	а	71
(5c)	NHCOBu ¹	а	55
(5d)	Bu	а	25
(5e)	Cl	b	18

reaction could be avoided if t-butyl-lithium was used at lower temperature (method b: Bu'Li 1.9 equiv., Et_2O , -50 °C). The chloro derivative (5; $R^1 = Cl$) was then selectively obtained but in low yield (18%).

4-Iodopyridines (5) were submitted to a cross-coupling reaction with various phenylboronic acids (6).⁹ [These compounds were most often prepared by directed metallation followed by boronation with $B(OMe)_3$].¹⁰ Cross-coupling reactions were carried out following the Susuki's¹¹ procedure [(5) 1 equiv., (6) 1.2 equiv., Pd(PPh_3)_4 (3%), 2M aq. Na₂CO₃, toluene, 12 h, reflux], which led to the expected 4-phenyl-3-pivaloylaminopyridines (7) in good yields (68–95%) (Table 2).¹²

The 2-substituted 4-phenyl-3-pivaloylaminopyridines (7) have been obtained in two steps from the corresponding 3-pivaloylaminopyridines in good overall yields. The C-2 substituent on the pyridine ring is of great interest in view of

Table 2. Cross-coupling reactions of 4-iodo-3-pivaloylaminopyridines with phenylboronic acids catalysed by Pd^{0} .

Compd. (5)	R ¹	Compd. (6)	R ² , R ³	(7)	Yield (%)
(5a) H H H H H	Н	(6a)	Н, Н	(7a)	95
	Н	(6b)	OMe, H	(7b)	80
	Н	(6c)	CONPr ⁱ ₂ , H	(7c)	85
	Н	(6d)	OCONEt ₂ , H	(7d)	87
	Н	(6e)	OCONEt ₂ , OMe	(7e)	80
(5b)	NHCOBu ^t	(6a)	H, H	(7f)	74
	NHCOBu ^t	(6e)	OCONEt ₂ , OMe	(7g)	72
(5c)	OMe	(6a)	H, H	(7h)	95
	OMe	(6b)	H, OMe	(7 i)	68
	OMe	(6c)	CONPr ⁱ ₂ , H	(7j)	93
	OMe	(6d)	OCONEt ₂ , OMe	(7 k)	88
(5d)	Cl	(6a)	Н, Н	(71)	70

grafting other substrates at this position for the elaboration of more complex triaryl compounds.

References

- (a) K. V. Rao, K. Bieman, and R. B. Woodward, J. Am. Chem. Soc., 1963, 85, 2532; (b) D. L. Boger, M. Yasuda, L. A. Mitscher, S. D. Drake, P. A. Kitos, and S. C. Thompson, J. Med. Chem., 1987, 30, 1918 and references cited therein.
- 2 See for example D. L. Boger and J. S. Panek, *Tetrahedron Lett.*, 1984, 25, 3175.
- 3 A. S. Kende, D. P. Lorah, and R. J. Boatman, J. Am. Chem. Soc., 1981, 103, 1271.
- 4 S. M. Weinreb, Strategies and tactics in organic synthesis; Academic Press Inc., 1984, 325.
- 5 D. L. Boger and J. S. Panek, J. Am. Chem. Soc., 1985, 107, 5746.
- 6 A Similar general synthetic methodology is described by Snieckus for the synthesis of polyaryl compounds: (a) M. J. Sharp, and V. Snieckus, *Tetrahedron Lett.*, 1985, 26, 5997; (b) M. J. Sharp, W. Cheng, and V. Snieckus, *Tetrahedron Lett.*, 1987, 28, 5093; (c) M. A. Sidiqqi and V. Snieckus, *Tetrahedron Lett.*, 1988, 29, 5463.
- 7 T. Güngör, F. Marsais, and G. Quéguiner, Synthesis, 1982, 499.
- 8 L. Estel, F. Linard, F. Marsais, A. Godard, and G. Quéguiner, J. Heterocycl. Chem., 1989, 26, 105.
- 9 Cheng synthesized a CD ring model of streptonigrin in 55% yield using the Ullmann reaction; P. J. Wittek, T. K. Liao, and C. C. Cheng, J. Org. Chem., 1979, 44, 870.
- See ref. 7 and J. W. Thompson and J. Gaudino, J. Org. Chem., 1984, 49, 5237 for the synthesis of ortho substituted phenylboronic acids.
- 11 N. Miyaura, T. Yanagi, and A. Suzuki, Synth. Commun., 1981, 11, 513.
- 12 Terashima described the synthesis of unsubstituted 4-arylpyridines by a coupling reaction from 4-bromopyridine via diethyl(4pyridyl)borane; M. Ishikura, T. Otha, and M. Terashima, Chem. Pharm. Bull., 1985, 33, 4755.

Paper 0/01311K Received 26th March 1990 Accepted 12th June 1990